CNPing车内评
汽车电子评测第一新媒体

CES深度分析(四):自动驾驶呼唤新的计算平台

本文作者系地平线智能驾驶商务总监李星宇,这篇最为感兴趣,转载过来。

文章对本届CES的自动驾驶最新进展进行了分析,认为商业模式的变革是自动驾驶领域群雄并起的原因,并从“合作共享”、“传感器成本下降”和“车联网发展”三个角度论证了自动驾驶产业化的长足进步。他还指出,自动驾驶竞争的关键是更加理性的决策算法和更实用的计算平台。在昨天的推送中,文章对自动驾驶的理性决策问题进行了讨论,今天最后这部分内容这主要围绕自动驾驶新计算平台的兴起和发展前景展开分析。

一、目前的硬件效能达不到实用要求

对于自动驾驶这样的复杂任务,在设计软件的同时,还必须考虑与之匹配的硬件效能,这里包括性能、功耗和功能安全。

为了保证自动驾驶的实时性要求,我们需要保证软件响应的最大延迟在可接受的范围内,对于计算资源的要求也因此变得极高,目前,自动驾驶软件的计算量达到了10个TOPS(每秒万亿次操作)的级别,这使得我们不得不重新思考对应的计算架构。图灵奖获得者Alan Kay,他有一句话是乔布斯一直信仰的:如果你严肃地思考你的软件,你就必须要做你自己的硬件。

事实上,整个数字半导体和计算产业的产业驱动力,正在从手机转向自动驾驶,后者所需要的计算量比手机要大两个数量级。

1

福特第二代Fusion自动驾驶原型车后备箱中鼓鼓囊囊地塞满了计算设备福特第二代Fusion自动驾驶原型车后备箱中鼓鼓囊囊地塞满了计算设备

今天,打开任何一家主机厂的无人车的后备箱,都是一堆计算设备,不但没有地方放行李,而且还要解决它的整个系统稳定性问题。之前在乌镇举行的世界互联网大会,记者在实际体验百度的无人车时,提到非常有趣的一点:“这辆无人车平稳地行驶了起来,但位于后备箱的车载计算机噪音较大,可以听到风扇在运行的声音。”
为什么呢?因为它使用的是CPU+GPU+FPGA的计算平台,计算所需要的功率非常大,GPU尤其恐怖,如果没有强力风扇来散热的话,夏天很容易烧坏机器。坐在这样的车里,就别讲究体验了。

功能安全是另一个巨大的挑战,这里面其实包含了多个方面的要求:处理器要符合至少ASIL-B等级的要求,可靠性需要能够保证在至少十年的使用期内不出问题。

高通在手机领域有非常强的实力,而且向汽车电子进军的努力也从未停止,但去年高通依然决定花370亿美元重金收购了汽车电子老大NXP,这从另一个侧面折射出汽车电子的门槛之高。

二、人工智能处理器与自动驾驶计算平台

这让我们想起计算机的发展历史,50年代是大型机的时代,那个时候一台大型机可以占据实验楼的一整个楼层,需要一个庞大的团队来操作,价格高到数百万美元;七十年代小型机占据主导,小型机可以安装进一个房间,价格也降到数万美元;八十年代是PC时代,可以摆放到桌面,价格则又降低了一个数量级,如今是手机,可以装进口袋;贯穿其中的是三个主要方面的进步:体积、功耗和成本。

人工智能所需要的处理器,从2012年开始业界已经开始广为关注,比如从GPU到FPGA,再到TPU,业界也沿着之前计算机走过路,重构人工智能所需要的处理器。

英伟达在本届CES上发布了最新的车载计算平台“XAVIER”,512 个 Volta CUDA 核心可提供高达 30 TOPS的计算性能,但最引人注目的还是其30W 的功耗,大大低于之前还需要水冷的Drive PX2。 这是一个很大的进步,但还不够,要让自动驾驶得到普及,性能、功耗、成本和体积因素,一个也不能少。

2

英伟达Xavier自动驾驶超级计算平台英伟达Xavier自动驾驶超级计算平台

如今很多车厂都制定了非常激进的自动驾驶开发计划,但其实样车开发与其投入到量产车的日程表其实是差异非常大的。与量产车的设计理念完全不同,量产车必须考虑成本因素,不能跟今天的GPU或者其它的计算所需要的成本一样,而这就需要业界提供新的计算平台。

FPGA被越来越多的公司关注,其可编程特性可以满足专有计算构架的需求,微软、Intel等公司都在大量部署基于FPGA的系统。

FPGA在ADAS方面的出货量也在迅速增加,去年的出货量应该不会低于3Mu。但FPGA再往上走,计算资源的扩展会让成本上升到很难接受的地步。半导体业界无数的历史都表明,FPGA往往是定制化ASIC的前哨站,一旦某个应用的量足够大,定制化ASIC就会变得更经济。

地平线机器人则希望借助自己的研究优势,目标是将原本智能在云端运行的人工智能,实现在高性能低功耗的大脑引擎(BPU)上。这是一个全新的计算构架IP,将充分适配深度神经网络算法的要求,由此带来革命性的嵌入式人工智能,预计其成本和功耗都将比现有GPU低一个数量级。这样的IP 可以嵌入到SoC中,或者单独作为协处理器使用。目前地平线正在推进代号为“高斯”的计算构架IP的开发,预计17年底推出。

3

地平线BPU战略地平线BPU战略

三、软硬件协同设计是新的趋势

在过去,处理器都是作为标准平台提供给业界,软件工程师拼命优化编译器、代码、任务调度等来达到更高的性能表现,但现在,这已经无法满足产品快速上市的要求了。

英伟达在AI业界攻城略地,几乎已经成为标配,这其中有其高性能GPU的因素,但问题在于,为什么其它GPU供应商没有赢得这场竞争?

英伟达不仅提供GPU硬件,还提供了高度优化的CUDA平台,该平台封装了大量高频使用的数学运算库,英伟达更进一步面向自动驾驶提供了端到端的解决方案,这实际上是一种重要的产品理念:软硬件协同设计。
这揭示了英伟达市场竞争成功的秘诀:通过软硬件协同设计,优化软硬件系统的性能表现,缩短客户导入时间,赢得市场。

4

英伟达从云到车端对端的自动驾驶平台解决方案英伟达从云到车端对端的自动驾驶平台解决方案

新的自动驾驶计算平台,实际上是因应算法和软件的需求而来的,例如,为了更好地支持深度卷积神经网络极大规模的矩阵运算,你需要考虑如何使用二值化方法来降低对于硬件乘法器的需求,如何重新设计缓存机制以避免I/O带宽成为整个计算系统的瓶颈等。为了满足功能安全的需求,你需要硬件级别的虚拟化,这就要求处理器构架设计方面需要考虑多核、VMM、设备I/O请求管理等。

Intel也在加强其在人工智能算法方面的积累,对Nervana和Movidius的收购反映了这一点。通过提供至强处理器、FPGA,结合其Nervana平台以及面向深度学习优化的数学函数库(MKL),提供完整的AI解决方案。
能否提供同时满足经济性和性能要求的计算平台,是自动驾驶能否从样车转向量产车的关键因素之一。

结语

公众对于自动驾驶依然有深深的疑虑,但在每一次革命性的交通运输方式出现时,类似的疑虑都曾经存在过。航空服务刚刚出现时,安全性非常低,多数人甚至都不相信金属构造能飞起来。美国海军统计表明,在二战期间,因技术原因损失的飞机达2100架,是被击落飞机的1.5倍,但航空业依然发展了起来;高铁同样有类似的经历,19世纪火车刚刚出现时,即使是最有远见的人都无法想象时速超过300公里的列车,那时候的人们认为仅仅是气压的问题就足以让乘客丧命,而后来这些都成为了现实,并且发展了体量惊人的配套基础设施:铁道和机场。当技术不存在原理性的问题之后,只要有巨大的商业潜力,利益的驱动终能克服技术上的挑战。

如果我们考察一段文明的发达程度,运输水平可能是最直观的指标。唐代玄奘取经,鉴真东渡,耗去的是一个人半生的时间,这里体现的是客运成本;南宋时期,从福建泉州出发的瓷器运到欧洲,增值达一百倍,体现的是货运的价值;19世纪美国的崛起,很大程度上得益于其全国铁路网的建立,将联邦的各个州融合成为一个单一市场。
文明的发展过程,也必然伴随着运输成本的逐渐降低,以及运输效率的持续提升,它深刻重塑了经济的形态。Elon Musk的终极梦想是殖民火星,同样是一个运输能力改变文明的故事,自动驾驶就是当下发生的故事,当人的劳动力被释放之后,成本下降就会驱动一波全新的机会。过去一年里,自动驾驶领域的进步已经超出了绝大多数人的预期,自动驾驶的未来值得期待。

未经允许不得转载:CNPing车内评 » CES深度分析(四):自动驾驶呼唤新的计算平台

分享到:更多 ()

国民猫叔,萌

评论 抢沙发

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址

车内评-汽车电子产品评测第一新媒体

联系我们加入我们